NAG Fortran Library Routine Document

F06PGF (DTBMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of *bold italicised* terms and other implementation-dependent details.

1 Purpose

F06PGF (DTBMV) performs one of the matrix-vector operations

 $x \leftarrow Ax$ or $x \leftarrow A^T x$,

where A is an n by n real triangular band matrix with k sub-diagonals or super-diagonals, and x is an n element real vector.

2 Specification

SUBROUTINE F06PGF (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX)INTEGERN, K, LDA, INCXdouble precisionA(LDA,*), X(*)CHARACTER*1UPLO, TRANS, DIAG

The routine may be called by its BLAS name *dtbmv*.

3 Description

None.

4 References

None.

5 Parameters

1:	UPLO – CHARACTER*1	Input
	On entry: specifies whether A is upper or lower triangular as follows:	
	if UPLO = 'U', A is upper triangular; if UPLO = 'L', A is lower triangular.	
	Constraint: UPLO = 'U' or 'L'.	
2:	TRANS – CHARACTER*1	Input
	On entry: specifies the operation to be performed as follows:	
	if TRANS = 'N', $x \leftarrow Ax$; if TRANS = 'T' or 'C', $x \leftarrow A^T x$.	
	Constraint: TRANS = 'N', 'T' or 'C'.	
3:	DIAG – CHARACTER*1	Input
	On entry: specifies whether A has non-unit or unit diagonal elements, as follows:	
	if $DIAG = 'N'$, the diagonal elements are stored explicitly; if $DIAG = 'U'$, the diagonal elements are assumed to be 1, and are not referenced.	
	Construction DIAC INT on UT	

Constraint: DIAG = 'N' or 'U'.

On entry: n, the order of the matrix A. *Constraint*: $N \ge 0$.

K – INTEGER 5:

> On entry: k, the number of sub-diagonals or super-diagonals of the matrix A. Constraint: $K \ge 0$.

6: A(LDA,*) - *double precision* array

Note: the second dimension of the array A must be at least max(1, N).

On entry: the n by n triangular band matrix A, stored in rows 1 to k + 1. More precisely, if UPLO = 'U', the elements of the upper triangle of A within the band must be stored with element a_{ii} in A(k+1+i-j,j) for max $(1,j-k) \le i \le j$; if UPLO = 'L', the elements of the lower triangle of A within the band must be stored with element a_{ij} in A(1+i-j,j) for $j \le i \le \min(n,j+k)$. If DIAG = U', the diagonal elements of A are not referenced, but are assumed to be 1.

7: LDA – INTEGER

> On entry: the first dimension of the array A as declared in the (sub)program from which F06PGF (DTBMV) is called.

Constraint: $LDA \ge K + 1$.

X(*) – *double precision* array 8:

On entry: the vector x.

On exit: the updated vector x.

INCX - INTEGER 9:

> On entry: the increment in the subscripts of X between successive elements of x. *Constraint*: INCX \neq 0.

6 **Error Indicators and Warnings**

None.

Input

Input

Input

Input

Input/Output

Input

[NP3657/21]